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1. Introduction 

Following McAlister [3] we call a semigroup S focalfy inverse if S is regular and 
eSe is an inverse subsemigroup of S for each idempotent e of S. Such semigroups 
were introduced and studied by Nambooripad [lo] who called them ‘pseudo- 
inverse’ semigroups. Relative to the ‘basic products’, the set of idempotents of a 
regular semigroup forms a partial binary algebra which has been axiomatically 
characterized as a ‘biordered set’ by Nambooripad [9]. The biordered set of 
idempotents of a locally inverse semigroup is called a local semilattice in this paper. 
Local semilattices were called ‘partially associative pseudo-semilattices’ by 
Nambooripad [lo] and ‘pseudo-semilattices’ by some subsequent authors [ 11, [5], 
[6], [7]. The present author used the terminology ‘local semilattice’ in [4]. 

A local semilattice may be viewed in several equivalent ways: 
(i) as a biordered set E in which iS(e,f)\ = 1 for all e, f E E (see Nambooripad 

[91v [lOI); 
(ii) as a biordered set E in which o(e) is a semilattice for each e E E; 

(iii) as a set E, together with two quasi-orders o’ and CU’ which satisfy conditions 
(PAl) and (PA2) of [lo] and their duals; 

(iv) as a binary algebra (E, A) in which A satisfies the following identities and 
their duals: 

(a) xAx=x, 

(b) (xAy)A(XAz) = (xAY)Az; 
(c) (xA_Y)A((xAz)A(xAu)) = ((~AY)A(xAz))A(xI-w). 

We refer the reader to the papers of Nambooripad [9], [lo] and Meakin and 
Pastijn [6], [7] for a discussion of the equivalence between these methods of viewing 
local semilattices and for all relevant notation and terminology. In particular, we 
regard the 0’ and o’ relations in a local semilattice (E, A) as being defined in such a 
way that the binary operation A extends the basic products. With this convention we 
have, for e, f e E, 
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eorf if and only if e=fl\e, 

e w’f if and only if e = el\f, 

w’(e)fl w’(f) = w(fAe) (where w = w’n w’), (w’(e), A) is a left normal band, 
(wr(e), A) is a right normal band and (w(e), A) is a semilattice. The binary operation 
A is not in general associative: in fact A is associative if and only if (E, A) is a normal 
band (Schein [13]). Consequently, it will be convenient to denote eAf either by eef 
or f A, on occasions. 

A structure theorem for local semilattices in terms of semilattices and sets was 
given in 161. Definition (iv) above makes it clear that local semilattices form a variety 
and so free local semilattices exist. The free local semilattice on a set X is a pair 
(FLSx, i) where FLSx is a local semilattice and i is a mapping i : X+FLSx such 
that, for each local semilattice E and mapping f: X+E, there is a unique homo- 
morphism @ : FLSx+E such that the diagram 

FLSx 

i 

i\ 

@ 

f 
X-E 

commutes. The free local semilattice on two generators was described by Meakin 
and Pastijn in [7] and its images (i.e. all local semilattices on two generators) were 
described by Meakin in [4]. In the present paper we provide a construction of the 
free local semilattice on an arbitrary set. Our construction depends on Scheiblich’s 
construction [12] of the semilattice of idempotents of the free inverse monoid on a 
set. We describe his construction briefly below. 

Let X be a set and X’ a set of the same cardinality as X with XO X’= 0 and x+x’ 
a bijection from X onto X’. Identify (x’)’ with x for each XEX. A word 
w=xIx2, . . ..x. of the free semigroup on XUX’is called reduced if x;fx:+i for any 
i: we denote the set of all reduced words by R. The multiplication in the free group 
R U { 1) will be denoted by - if necessary, to distinguish it from the multiplication in 
the free monoid which will be denoted by concatenation. A finite subset T of 
RU{1)iscalledclosedif1~Tandw=xlx2...x,~Timpliesx~...x~~Tforalli~n. 
The following result is due to Scheiblich [12]. 

Proposition 1.1. Relative to the operation of taking unions of sets, the set of all 
finite closed subsets of R U ( 1) f arms a semilattice Ex isomorphic to the semilattice 
of idempotents of the free inverse monoid on X. 

We shall use the notation developed in this construction of Ex throughout the 
paper. 
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Let X be a non-empty set and Xe=XU (x0} where xO@XUX’. As above, Ex 
denotes the semilattice of idempotents of the free inverse monoid on X. Denote the 
principal ideal of Ex generated by A E Ex by (A): thus (A>= {BE Ex: B 2 A}. Note 
that the antiatoms of Ex (elements covered by { 1)) are of the form (1.x) or { 1, x’} 
for xeX. For x, yeX let n(x, y) be the 2-cycle of Sx (the symmetric group on X) 
which interchanges x and y (x(x, y) is the identity map on X if x=y) and let n(x, y) 
actonaword w=x I . ..x.ERU(~} by wn(x,y)=xtn(x,y)...x,rr(x,y);wheretn(x,y) 
denotes the action of n(x, y) on t if t E X and z’n(x, y) = (v(x, y))’ if z f X. Note that, 
if w E R, then wn(x, y) E R. Extend the action of n(x, y) to Ex by defining .4x(x, y) = 
(wn(x,y): we.4) for ACE x: note that Alc(x,y)~E~ if AEE,. For xeXUX’ 
defineR:RU{1}~RU{1}byw~=x~wforw~RU{1}anddefineAR={w~:w~A} 
for A E Ex. Now define a principal ideal isomorphism yxu: ({ l,x})*({ 1,~‘)) (for 

x,u~X) by yxu = n(x,y)J’=x’~c(x,y); i.e. Ay,,=A7~(x,y)P’=A~‘n(x, y), for 
A o({l,x}). Note that yx,Y is a principal ideal isomorphism from ((1,x)) onto 
({ 1, y’}) and so Y~,,E T,, (the Munn semigroup [8] of Ex): the inverse of Y,~,, in TEx 
is the principal ideal isomorphism y ~$=P71(x,y)=rr(x,y)xof <{l,y’}) onto ({Lx}). 
Finally let 1 denote the identity automorphism of Ex and for x, y E X0 we let 

I 

1 
if x=y, 

Pxy = 
yxx ify=xOandx#x,,, 
yyy if x=x0 and y#xo, 
Y,,~ if xfy and x,yeX. 

We are now in a position to state the main theorem of the paper. 

(1) 

Theorem 2.1. LetXbea non-emptyset, ~~~XUX’andletP=(p,,) be theXoxXo 
matrix with (x, y) entry pxy~ TEx defined by (1). Form the X0xX0 Rees matrix 
semigroup ,I = _ff(TEx; X0, X0; P) over TEx. Then _I is a locally inverse semi- 
group whose biordered sets FLS x,,= E(J) is a local semilattice. Define a map 
i:Xo-+FLSxO by i(x)=(x,r,x) for x.eXo. Then the pair (FLSxO,r) is a free local 
semilattice on X0. 

We prove this theorem by a sequence of lemmata. 

Lemma 2.2. The Rees matrix semigroup A is a locally inverse semigroup (and 

hence E(A) is a local semilattice). 

Proof. Since T,, is a regular (in fact inverse) semigroup with identity I and since P 
has an entry I in each row and each column, it follows immediately from Marki [2] 
that .A’ is a regular semigroup. Now if S is any. inverse semigroup and P any A x I 
matrix over S, it is routine to check that, for idempotents (i, x, A) and (j, y, P) of 
_/c(S; I, ,4; P), we have (i,x, A)w(j, y, u) iff i=j, A =u and xsy in S, (&x,2.) 2 
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(j y,,~) iff i=j and x Ry in S, and (i, x, ,I) z‘(j, y, ,D) iff ,I =p and xYy in S. From 
this it follows easily that the regular part of J(S; 1,/l; P) is locally inverse. (This 
argument follows from results in McAlister [3] and is explicitly stated in Meakin 
[5].) Hence .L is locally inverse. 

A convenient description of the idempotents of J is provided in the next result. 

Lemma 2.3. Let x, y E X with xfy and let y E T,,. Then we have: 
(x, y, x) E E(“4) ifand on/y if y = l(A) for some A E E,; 
(XO,Y,Y)EE(.AA’C) iffy=Y(CA)forsOmeAEExwithy’EA; 

(x,Y,xo)EE(-J) iffv=x) f (,+ or some A E Ex with X’E A; and 

(4 Y, Y) E Et-@) iff Y = (J~T(x, Y)) ((A) for some A E Ex with Y’E A. 

Proof. For any x, YE X0 and y E TEE it is easy to see that (x, y, y) E E(M) if and only 
if yip,;‘; i.e. y =pij I(,+ where A is some finite closed subset of R’ such that (A) is 
contained in the domain of py;‘. The result now follows easily from the definition 
(1) of the pxy. 

The above result shows that an element (x, y, y) E ,I is an idempotent if and only if 
y is the restriction of py;’ to a suitable principal ideal (A) of Ex: it is convenient to 
denote such an idempotent by (x, y(A), y) in the remainder of this paper. The 
Green’s R and 2’ relations on E(J) are described in terms of this notation in the 
following lemma. 

Lemma 2.4. If x, y E X0 and x#y, then (x, y(A), x) R (x, y(B), y) iff A = B; if x, y E X 

and x+y then (y, y(A), y) U(x, y(B), y) iff A = B.&%(x, y); if x, YE X then: 

(~0, Y(A), Y) U(Y, Y(B), Y) iff AY =B; and 

(xo. Y(A), xo) 9(x, y(B), xo> iff A = BE 

Proof. Suppose that (x, y(A),x) 3 (x, y(B), y) with xZy and x, YE X. Then 

(x9 l(A), x)(x, u-(x, Y>) I(B), Y) = (4 (mk Y)) I(B), Y), 

so ~<A,(ydx, Y)) I(B) = (Ydx, Y)) 1 (B). Since the domain of the mapping on the left of 
this equation is (A UB) and the domain of the mapping on the right is B, we have 
AUB=B; i.e. AcB. Also, 

(x, (Jn(& Y)) I(B)r Y)(& i(A), x) = (x9 l(A), x), 

so jk(x, y) [<B,~c(x, Y)_P~I<A)= I(A) and hence I( = l(A); i.e. A U B = A and so 
B c A. It follows that A =B. One easily checks that conversely, if A = B then 
(x, y(A), x) 9 (x, y(B), y). A similar argument applies if either x=x0 or y = x0. 

Suppose now that (y, y(A), y) Ip(x, y(B), y) with x#y and x, y E X. Then 

(Y, l(A), y)(x* (Yn(x, y)) I@), y) = (y, [(A)r y), 
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so ‘(A,W. Yu’tJn(x~ Y)) I (Bj=~(A) and it follows (by equating domains of these 
mappings) that A U Byn(x, y) = A; i.e. Bj?r(x, y) G A. Also, 

(x9 (J-(x* y)) l(B), y)(y* l(A), y) =(x9 (Y71k y)) I<0 Y), 

so (J-(x, Y)) I&,4)= (J-(x, Y)) l(B) and so (by equating ranges of the mappings) we 
have Byn(x, y) UA = BJn(x, y); i.e. A G BjVc(x, y), Hence A = @x(x, y). Again, one 
routinely verifies the converse: (y, y(A), y) U(x, y(B), y) if A = Byn(x, y). A similar 
argument applies when either x=x0 or y =x0. 

For each XE X0 let b, be the idempotent b, = (x, I, x) of E(J) and let b. = b,. The 
following result follows from Lemma 2.4. 

Corollary 2.5. For x, y E X with xfy, we have 

(XV YWJkfJy~L+= (n Y({ 1) U&Wx Y)X Y), 

(XT Y(A), X)‘&@b,y = (Y, Y({ 1) UAY’7-0, Y)), Y), 

(x9 Y(A),xkbo&)= (x0, Y({ 1) UA%xo). 

k Yc4 .mbOebO= (x0, a 1) UAa x0), 

(x0, Y(A)* xo)ebv~by= (Y9 Y<{ 1) UAYX Y)9 

(x09 Y(A)* xo)~b,e~~“= (Y9 Y({ 1) UA7’), Y). 

Proof. By Lemma 2.3, if xfy, we have (x, y(A),x)~b,~=(x, y(A),x)l\(y,r, y) = 

(x9 Y(C), Y)9 where C is the smallest finite closed subset of R U { 1) which contains A 

and y’. Hence (x, y(A), x)gqy= (x, v({ y’} UA), y). It follows from Lemma 2.4 that 

(XV Y(NJ)&$by=(Y’ y(({Y’IU‘4)Yn(x, Y)), Y)=(Yv Y({lI UAYn(-% Y)), Y), 

as required. The other results in the statement of Corollary 2.5 follow in a similar 
fashion. 

We aim to show that E(J) is generated (as a local semilattice) by { 6,: XE X0}. 

We introduce the following notation in order to do this. For XE X0 define maps a(x) 
and a(~‘) : E(.l)-E(.A) by 

o(x) = @b,Ab, and a(~‘) = &Q~,. (2) 

[Here x6 is an element not in XoU X’: we denote X’U (x6) by Xi.] For XE X0 and 
YE X define 

(3) 

If Yl, Y2, *me, Y,EXUX’ we let I(yty2... yP) denote the set of initial segments of 
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yl y2 . . . yP; i.e. 

4YlY2...Yp)=(LYl9YlY2~....YlY2...Yp). 

Clearly Z(yi y2 . . . y,) is a finite closed subset of R U { 1); i.e. Z( yt yz . .-up) EEX. 

Lemma 2.6. If XEX,, and y,, y2, . . . , ~,EXUX’, then there 

zl,zt ,..., zP~XoUX~andzo~Xosuchthatzj~{zi+l,z~+l} fori=O, 

(4 YV(YlY2 -*-up)), X) = &p(t1)422) -** a(tp). 

are elements 
1 ,-..,p-1 and 

Proof. We do this by induction on p. If p= 1, then (x, y(Z( yi yz . . . yP)),x) = 
(x,y({l,y,}),x). If yi~X set zc=[x, yl] and L,=x: if Y,EX’ set ZO=[X, y;] and 
zI =x’. One easily checks from Corollary 2.5 that (x, y({ 1, yl}),x) = b&t,) in all 
cases: for example, (xg, y( ( 1, y}), xg) = (y, 1, y)cr(xa) if y E X, and all other cases may 
be checked similarly. It is also clear that ZOB {E,, t;). Suppose now that the result is 
true for all words yl yz . . . yk of length k<p and consider (x, y(Z(yiy2 . . . yp)),x) with 
x#xo. Define w~E(./o by 

ify, EX, w= 
t 

(ix, ~11, My2 .-.yP77k YI))), [xv ull) 
([~~Y~I~Y(~(Y~...Y~~~(~,Y~)))~ ky;l) ifylEX’, 

and let 

zp= x 
I 

if y,EX, 

X’ ify,EX’. 

Clearly ~,~(~~,Y~I,~~,Y~~,~~~Y~~‘,~~,Y~I’}. Now if YI=X, then [X,YI~=XO and 

x(x, yl) is the identity transposition, so w = (x0, y(Z(y2 . . . up), x0) and so by Corollary 
2.5, 

A similar argument deals with the case yl =x’. If yi E X and yi ;tx,.then [x, y] =yi, 
so w = (yi, y(Z( y2 . . . y&x, yi)). y,) and so by Corollary 2.5, 

W(T(zp)=wa(x)=(x,y({l}Uz(Y2...y,~~~~Yl))~’n(x,Yl),~) 

=(X,y({l)u(x.z(y2... Yp mv Y 1 )))n(xt Y 1)X 4 

=(x,Y({1)uz(YlY2...Y,)),x) 

=(x,Y(Z(Y,Yz...Y,)),x). 

The case yI EX’ and y; #x is dealt with similarly. Hence, in all cases, if x+x0 we 
have (x, y(Z( y, y2.. . yP)), x) = wc~(.zJ If x = xo define w E E(J) by 

(Y~,YU(Y~...Y,))~YI) ifylEX, 

(Y;,Y(~(YZ...Y,)),Y;) ifylEX’, 
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and let Z,=x, if y, E X and Z,=xA if yI EX’. Then in both cases it is easy to check 

that (xc, y(Z(yIyz . ..yJ).xe) = wa(z,): we thus have (x, y(l(yry: . ..Y~)).x) = wa(z,) in 
all cases. Now by the induction hypothesis there exist zl, 22, . . . , z+_ i E XoU XA and 
ZOEX, such that zi$ {Zi+r,zI+,} for i=O, l,...,p-2 and w=btoa(~,)a(z2)...a(zp_,). 
It follows that (x, y(f(ylyz . ..yP)).x) = b,,a(zl)ak2) . . . a&,-I)a(z,); since z,-I = 
[x, y,] or [x, y;], z,_ , IIE {z,, zk} and hence the result follows by induction. 

Lemma 2.7. The representation in the previous lemma is unique; i.e. if 

k,dz&4z2) . . . a@,) = b,,a(u Mu2) . . . a(u,) 

fOf some Zo,l.loEX~ and t;,UjEXoUXi with ZiB {Zi+*rZI+I} and u;e {Ui+19”l+I], 
thenp=qandzi=uifori=O,...,p. 

Proof. It is straightforward to verify from Corollary 2.5 that 

&p(zMz2) . . . a(Zj) = (Yjt Y(ltwj))9 Y,), for i= 1, . . . , P, 

where the elements Yj of X0 and words Wj in the free semigroup on XUX’ are given 
inductively as follows: 

Yj = 
t 

2, if zj~X0, 

2; if ZjEXA, 
forj=l,...,p, (4) 

WI = 

if zo=xo, 
if ZO#XO and z1 E X0, 
if zofxO and zI E&, 

(5) 

andforj=l,...,p-1, 

Wj+l= 

if _Yj =x0, 
ifyj*xoandZjttEXy 

ifYj*xoand zj+leX’* 
if yj#O and Zj+r=Xo, 
if yj#O and zjc i=x6* 

(6) 

Similarly one sees that 

b,,a(u,)a(uz)...a(uj)=(aj,y(l(uj)).aj), forj=L...,q, 

where the elements aj of X0 and the words Vj (j= 1, . . . ,q) are obtained from 

UO,Ulr***, ug in the same manner as the _Yj and Wj (j = 1, . . . , p) are obtained from 

zo, Zl, a.*, z,. It follows immediately that wP= ug and hence that p=q since p is the 
length of wP and q is the length of uq. . it is thus also immediate that yP=aP. We 

prove the desired result by induction on p. Suppose first that p = 1. If UO=XO and 
u,EX, then we see that wt=ut=ut~X and yl=al=ul: since wl=yl we see 
from (4) and (5) that we must have z. =x0 and so zo= uo: also since to=xe we must 
have z,= w, so z,=uI. If uo=xo and uleX’, then we see that wl=ul=ul~X’and 
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yI = (I] = u;: since yt = w; we see from (4) and (5) that ze=xo and so ZO= uo: also since 
zO=xowehavez,=wiandsozl=u 1. IfuoEXandul=xo, then wi=vl=UoEXand 
yl = aI = ul =x0: since wI d { yi, y;} and wt fX we see from (4) and (5) that w, =zo 
and so zo=uo: also zl~XO, so yI=tl and so zl=nI. If uo~X and u,=x& then 
w,=U,=~;)EX’andy,=al=u;=xo:sincew,~(y,,y;}andw,~X’ weseefrom(4) 
and (5) that w,=.zhand soze=ug: alsozlEX& so yl=z; and sozi =ui. If ue~Xand 
u,EX, then wi=Ui=~o~X and yi=a,=ui~X: since w,@{yi,y;} and W,EX we 
see from (4) and (5) that wi = to and so to = uo: also zI E X0 so yI = zI and so zI = al. 
The remaining case (UOEX and uI EX’) is dealt with in a similar fashion and so 
zo= u. and zI = ul in all cases: thus the result is true for p = 1. 

Suppose inductively that the result is true for p=j and assume that 

6&z,) . . . a(Zj+I)=b,,a(uI)...a(uj+!; 

for zi,Ui as in the statement of the lemma. In the notation of the beginning of the 
proof of the lemma, we have Wj+i=Uj+t and yj+l=a,+l. If uj=xoand Uj+iEX, 
then aj=nj=xoand SO W;+i=Uj+i=Uj+tUjand yj+i=~j+i=Uj+i: from (4) and (6) 
itfollowsthaty~=X~,SOyj=ajandwj+t=Zj+iwj: hence(sincewj,i=Uj+i),Zj+t= 
uj+l and vj=Wj. Ifuj=xaandUj+iEX’, thenaj=Uj=xoandSO Wj+l=Vj+l=Uj+lVj 

andyj+i=a,+i=uj+i: from(4)and(6)it followsthaty,=~o,~~yj=a,and Wj+i= 
zj+lWj: hence, again it follows that zj+t=Uj+t and Uj=W,. If u,EX and u,+~=xO, 

thenaj=u,#xoandso Wj+l=Vj+l= , , u IJ and yji 1 =aj+ I = uj+ 1: since the first letter 
in wj+, is Uj $ { y,+ i, yj’+ i} and Uj E X, we see from (4) and (6) that we must have 
_Y,#XO and Zj+lEXOy SO Zj+l=Yj+l=U,+l=U,+I=Xo and SO y,Wj=Wj-i=U,+i= 
UjUj, from which it follows that yj=uj=a, and W,=V~. If UjEXand Uj,t=xothena 
similar argument shows again that zj+ I= Uj+ 1, Wj = Uj and yj = a,. If U, E X and 
uj+l~X then aj=Uj#xa and SO W,+l=Uj+l=(U,+IUj)~(Uj+I,aj) and Yj+I=a,+I= 
u,,,: since the first letter in wj+i is aj=Uj and UjB{y,+i,yj+I} and UjEX, we see 
from (4) and (6) that we must have yjfxo and z,+~EXO, so Zjci=Yj+t=Qj+i= 
uj+lcX and SO (zj+i , w.)~(zj+~,yj)=wj+~=Uj+~=(Uj+~Uj)~(Uj,~,~,), from which it 
follows that yj = aj and hence Wj = Uj. Finally, if Uj E X and Uji 1 E X’ then a similar 
argument shows that zj+ I =uj+,, Y, =aj and Wj= v,. Thus in all cases, we have 
zj+l=uj+l, yj=a, and Wj=Uj. Since yj=aj and wj=Uj, we have 

~,a(zMz2) *-- Cr(Zj) = b,,a(u,)a(u2) . . . Cr(Uj), 

and hence by the induction assumption, z, = I(; for i=O, 1, . . ..j. We also have 
zj+ , = u,+ , and so the result is proved by induction. 

Lemma 2.8. Every element (x, y(A), y) of E(J) may be expressed in the form 

where 

(x. Y(A), Y) = 
[ 

A (x, 10(w)), x) Q~.,, 
WEA 1 

JA (x9 N(w)), x) 
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denotes the meet in the semilattice o(b,) of the elements (x, y(I(w)). x), w E A. 

Proof. By Lemma 2.4 we see that (x, y(A),x) 9(x, y(A), y) and so (x, y(A), y) = 
(x, y(A), X)Q. But by Lemma 2.3, 

(A y(A). X) = (X, IA, X) = A (4 ‘r(w). X) = A (4 Y(l(W)), Xh 
WEA WEA 

Corollary 2.9. E(A) is generated by { 6, : x E Xc}. 

Proof. This is immediate from Lemma 2.8 and Lemma 2.6. 

Remark 2.10. Lemmas 2.3, 2.6, 2.7 and 2.8 provide us with a ‘canonical form’ for 
expressing elements of E(A) in terms of the generators b,, x E X0. Every element of 
E(A) is uniquely expressible in the form (x, y(A), y) for some x, y E X0 and A E E, 

and hence may be uniquely expressed in the form [AWeA(x, y(Z( w)), x)]+, (where we 
interpret y(Z(w)) as I if A = {l}) - and every element (x, y(Z(w)), x) may be uniquely 
expressed in the form b,a(tl)a(zz) . . . a(~,) for some ZOE Xc and ti E XeUX& Of 
course this canonical form does not provide the only way of expressing (x, y(A), y) in 
terms of the generators b,, xcXo: nor does it necessarily provide’the ‘shortest’ way 
to generate (x, y(A), y) from { 6,: x E X0}. 

In order to prove Theorem 2.1, we need to establish some notation and results 
which apply to an arbitrary local semilattice E. Let E be a local semilattice and let E’ 
be a set disjoint from E such that the mapping e+e’ is a bijection from E onto E’: 
again, identify (e’)’ with e for each eEE. For eE E define a(e) and o(e): E-E by: 

o(e) = eA and a(e’) = A,@,. (7) 

Lemma 2.11. If E is any local semilattice and e, f E E, the mappings a(e) IwCn and 
a(e’) lwtn are homomorphisms from o(f) into o(e); also fa(e’) C$ eeJ Yea(f) and if 
t E o( fa(e’)), s E o(ea( f )), then t W tef Y ta( f) and s Yd, &‘sa(e‘). In addition, if 

g E o(e) and h E o(f) then geh = [gA(ha(e’))]e/. 

Proof. Since eeJ = fA, = eA f E o’(f) n o’(e) it is clear that there is some element in 
R,,&o(e) and so ee,=fJ.,.2fA,e,=fa(e’): similarly, eeyYea(f). If tEo(fa(e’)), 
then there is an element in R,nw(e@f) and so t S? tef: again, tef oeQf and 
eQJ.Yea(f), so &J!‘ta(f). Similarly, if SE o(ea(f)), then s_YsA, %sa(e’). Now let 
hl,hzEu(f) and h=h,Ahz (the meet in o(f)). Since hohi it is clear from the 
definition of the A operation in a local semilattice that h&w hi&. and ha(e’)= 
hA,e,o hilee,= hia for i= 1,2. Now suppose that kw hia for i= 1,2. Then 
by the same argument as above ka(f)o h;a(e’)a(f) w hi for i= 1,2, so ka(f) o 
h,Ahz= h and it follows that ka(f)a(e’) w ha(e’). But for i= 1,2, ko hia R hiA,, 
SO kQf 1 k. ALSO kQ/o hiJ= .50h;/lelJ, so ke,Af Ykey. Hence k B k,o/ YkQfLJ= 

ka(f). It follows that ka(f>a(e’) = k and hence ko ha(e’). Hence ha(e’) = h,a(e’)A 
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h2cr(e’), and so ate’) is a homomorphism as 
morphism. 

Now let g E o(e) and h E o(f). Then 

g@~=gAh=(eAg)Ah 

required. Similarly a(e) is a homo- 

= (eAg)A(eAh) (by axiom (b) for local semilattices) 

= gAe@h %‘gAh(a(t?‘)) (since eeh 9 ha(e’)), 

so g& 9? gA(ha(e’)) and it follows that g@h = [gA(hCf(e’))]&, as required. 

We are now in a position to provide the following. 

Proof of Theorem 2.1. Let f: X0 +E be any map from X0 to the local semilattice E. 
We must show that there is a unique homomorphism @: E(,/c)+E such that 
@(x,i,x)=f(x) for each XEX~. In order to define the map c$: E(_d)+E we use the 
canonical form for elements of E(A) (see Remark 2.10). If (x, y(A), y) E E(d) then 
we write (x, y(A), y) = [ AwEA(x, y(Z(w)), x)]Q~,,: for each w EA there are elements 
zooXOandz;~XOUX~((i=lr..., p) such that (x, y(Z(w)), x) = b,,a(t,) . . . a(z,). In this 

case we write @((x9 y(Z(w)), x)) =f(zo)a(f(tl)) . . . a(f(zJ), where f(Zi) = [f(zi)]’ for 
zi E Xi. Now since b,a(z,) . . . a(z,) E o(b,), we have 

X 
z,= I if z,EXc, 

X’ ifzPEX& 
and so 

fCzp) = 

from which it follows that f(zda(f(zd) . . . a(f(zJ)Edf(X)). Hence 
@((x, y(Z(w)), x)) E o(f(x)) for each w E A. Now define 

dJ((x, Y(A), Y)) = 
[ 
wcA f#Jw, YMW)), x)1 @j-(y), 1 (8) 

where the meet operation is the meet operation in o(f(x)). Since each element of 
E(d) has a unique canonical form, C$ is a well-defined map from E(d) to E: also 
@(b,) = @((x, r,x)) = [f(x)]~f(~, = f(x) for each XE X0. We need to check that 4 is a 
homomorphism. 

Suppose first that (x, y(A), x) 9 (x, y(B), y) in E(d). Then by Lemma 2.4 we have 
A = B. Suppose first that xfy and x,y~ X, so that ~‘EA by Lemma 2.3. Now 

@((XV Y(A), x)) = 
[ 

*?A @((x9 Y(Z(W)). x)) @J(x) 1 = JA $4(x, YMW 4)s 
and @J((x, r(A), Y)) = [AwEA @((x, HZ(w)), x))]Q~(~). Since Ye.4 and since 



The free local semilatrice on a ret 273 

(x, { 1, y’}, x) = b&x’) (by Corollary 2.5). we see that @((x, Y@),x)) ofWat[fWl’) 
in E (by (8)). But f(r)a(W)l’) ~.!W~~(x) so @((xv Y(A), x)) J? [@((x9 Y(A), X))lQ/(y, = 
@((x, y(A), y)) by Lemma 2.11. A similar argument in case xfy and x=x0 or xfy 
and y =x0 shows that @((x, y(A), x) R @((x, Y(A), y)) in these cases also. Hence we see 

that, if (x, y(A), x) R (x, y(B), u) in E(J)), then $4(x, y(A), x)) 2 O((x, y(B), ~1) in E. 
Now suppose that (x, y(A), y) Y(y, y(B), y) in E(d). If xfy and x,y EX then by 

Lemmas 2.3 and 2.4 we see that Y’E A and B = Ayn(x, y). Now 

@((us Y(B), Y) = w~B @((Y, YMN), Y)) e/cy, 1 
and 

@((x9 Y(‘4), Y)) = 
[ 
AA @((x, Y(Z(W))* x)) @,f(y,. 1 

As before, we have Y’E A and (x, { 1, y’}, x) = b,[a(x)]‘, so 

A @((x9 ~(44)~ x)) o_f(y)a([f(x)l’), 
WEA 

i.e. @((x, y(A), x)) of(y)a([f(x)]‘) in E. It follows by Lemma 2.11 that 

@((x, Y(A). Y)) = @((x9 y(A), x))e/~~, Y [@((x9 Y(A), x))la(f(yh 

since fWa(Mx)l’) af(u)A~~, Y_~(Y)JJ~Kw Hence 

@((x9 Y(A), Y)) Y 
[ 

w$A GJ((x, Y(~w)), x)) W(y)). 1 
But if w EA and (x, y(Z(w)), x) = b,a(t,) . . . a(.@ E o(x), then (x, y(Z(w)), x)a(y) = 

bzoa(zl) . . . a( E o(y) and b;,a(zl) . . . a( = (Y, yV(u)), Y) for SOme 0 E B. 
It follows that 

[ 
A @((x7 y(Z(w)), x)) o(f(y) = y?B @((y, y(Z(u)), y)) 

WEA 1 = @((Y, y(B), Y)), 

and hence @((x, y(A),y)) Y@((y,y(B),y)). A similar argument in the cases where 
x=x0, yfx and y=xo. yfx shows that @((x,y(A),y))Y@((y,y(B),y)) in E when- 
ever (x, y(A), y) Y(y, y(B), y) in E(,M). Hence $J preserves the Y- and R-relations in 

E(J). 
Suppose now that (x, y(C), y), (u, r(D), u) E E(J). There are uniquely defined sets 

A and B such that (x, y(C), y)~(u, y(D), u) = (x, y(A), X)A(U, y(B), u). If x= u, then it is 

evident from (8) that @((x, y(A), X)A(U, y(B), u)) = @((x9 Y(A), x))A@((u, y(B)), u)), so 
assume x# u and also that x, UEX. Then by Lemmas 2.3 and 2.4, 
(x, y(A), x)A(u, y(B), u) = (x, y(E), u), where E = A U Bn(x, o)rJ’U {u’}. We have 
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@((x9 Y(E), 0)) = 
[ 
,p?, @((x9 Y(W), x)1 I @f(u). 

BY Lemma 2.11 we have k Y(A), X)A(U, y(B), 0) = Kx, y(A), x)Nu, y(B), u)a(x’)leb,, 
so (x. y(A), x)A(u, y(B), u)a(x’) = (x, @7),x), and hence 

[ 
A (x9 YMW)). x) A 

WEA I[ 
JB (0, YMQ), UMX’) 

1 
= AE tx, y(W), xl. 

It follows from (8) that 

@((Xv Y(A)), x))A$(tu, Y(B), u)Mi_fOl’) = @3(x, y(E), xl, 

and hence 

@((X? Y(E), 0)) = @((x, Y(E), me/(,) 

= [@(t-C Y(A), x))A@((u, Y(B), ~Natkf(x)l’>le~~~, 

= OK? y(A), x)bV~((u, y(B), UN by Lemma 2.11. 

Similar arguments in casex=xo, UEX or 0=x0, XEX show that 

@((A Y(A), X) A(u, J’(B), u)) = @((x9 y(A), X)) A@((& Y(B), u)) 

in all cases. Since @ preserves Y- and &?-relations in E(A), we have 

O((X. Y(C), J’)A(u, Y(o), 0)) = @((x, y(C), U))W((u, y(D), 0)) 

for all (x, y(C), y), (u, y(D), u) E E(A). Hence @ is a homomorphism. 
Finally, if w is any homomorphism from E(A) to E such that ~(b,~) =f(x), then 

we must have y/(b,,a(zt) . . . a(z,))=f(z&~(f(z~)) . . . cr(f(z,)) for each ZOEXO and 
ziEXoU& (i= 1, . . . . p), so it easily follows that w = @. This establishes the unique- 
ness of #J and hence completes the proof of the theorem. 

The explicit nature of the description of the free local semilattice provided in 
Theorem 2.1 makes it clear that the word problem is solvable in FLSx,, for each set 
X0. From Lemmas 2.3 and 2.4 one can explicitly compute the meets (x,y(A),y)A 

(u, y(B), u) in E(J): hence any expression involving meets of the generators b, of 
E(,/o may be reduced in a finite number of steps to the form (x, y(A), y) for some 
x,y~_X, and AEE~. It is thus possible to decide, in a finite number of steps, 
whether two expressions in the generators of E(d) yield the same element of E(J). 
Hence the word problem in FLSX,, is solvable. 

The local semilattice E(d) is a disjoint union of its maximal subsemilattices in the 
sense of Pastijn [ 11) or Byleen, Meakin and Pastijn [ 11. It is clear that the ‘diagonal’ 
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maximal subsemilattices (those of the form {(x, y(A), x) : A E Ex} for XEX~) are 
isomorphic to the semilattice Ex of idempotents of the free inverse monoid on X, 
while the other maximal subsemilattices are isomorphic to principal ideals generated 
by antiatoms of Ex. A diagram depicting the free local semilattice on two generators 
may be found in Meakin and Pastijn [7]. 
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