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1. Introduction

Following McAlister [3] we call a semigroup S locally inverse if S is regular and
eSe is an inverse subsemigroup of S for each idempotent e of S. Such semigroups
were introduced and studied by Nambooripad [10] who called them ‘pseudo-
inverse’ semigroups. Relative to the ‘basic products’, the set of idempotents of a
regular semigroup forms a partial binary algebra which has been axiomatically
characterized as a ‘biordered set’ by Nambooripad [9]. The biordered set of
idempotents of a locally inverse semigroup is called a /ocal semilattice in this paper.
Local semilattices were called C‘partially associative pseudo-semilattices’ by
Nambooripad [10] and ‘pseudo-semilattices’ by some subsequent authors [1], [5],
[6], [7]. The present author used the terminology ‘local semilattice’ in [4].

A local semilattice may be viewed in several equivalent ways:

(i) as a biordered set E in which |S(e, f)|=1 for all ¢, fe E (see Nambooripad
(91, [10D);

(ii) as a biordered set E in which w(e) is a semilattice for each ec E;

(iii) as a set E, together with two quasi-orders w” and w' which satisfy conditions
(PA1) and (PA2) of {10] and their duals;

(iv) as a binary algebra (£, A) in which A satisfies the following identities and
their duals:

(a) xAx=x,
(B) AVIAXA)=(XAYINZ;
(©) XAMAXADAAU)) =[{(XAVIA(XAD)A(XAL).

We refer the reader to the papers of Nambooripad [9], [10] and Meakin and
Pastijn {6], [7] for a discussion of the equivalence between these methods of viewing
local semilattices and for all relevant notation and terminology. In particular, we
regard the w' and w" relations in a local semilattice (£, A) as being defined in such a
way that the binary operation A extends the basic products. With this convention we
have, for e, fe E,
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ew’f ifandonlyif e=fAe,
ew'f ifandonlyif e=eAf,

@'@Nw(f)=w(fre) (where w=w'Nw"), (w'e),A) is a left normal band,
A is not in general associative: in fact A is associative if and only if (£, A) is a normal
band (Schein [13]). Consequently, it will be convenient to denote eAf either by eo,
or fA. on occasions.

A structure theorem for local semilattices in terms of semilattices and sets was
given in [6]. Definition (iv) above makes it ciear that iocal semilattices form a variety
and so free local semilattices exist. The free local semilattice on a set X is a pair
(FLSy, i) where FLSy is a local semilattice and / is a mapping /: X >FLSx such
that, for each local semilattice £ and mapping f: X —E, there is a unique homo-
morphism ¢ : FLS y — E such that the diagram

FLSyx

S

X

commutes. The free local semilattice on two generators was described by Meakin

E

described by Meakin in [4]. In the present paper we provide a construction of the
free local semilattice on an arbitrary set. Our construction depends on Scheiblich’s
construction [12] of the semilattice of idempotents of the free inverse monoid on a
set. We describe his construction briefly below.

Let X be a set and X"’ a set of the same cardinality as X with XN X’'=0 and x—x’
a bijection from X onto X’. Identify (x’)’” with x for each xeX. A word
W=XX2,..., X, of the free semigroup on XU X" is called reduced if x; # x;, | for any
i we denote the set of all reduced words by R. The multiplication in the free group
RU {1} will be denoted by - if necessary, to distinguish it from the multiplication in
the free monoid which will be denoted by concatenation. A finite subset T of
RU{1}is called closedif 1€ T and w=x,x;... x,€ T implies x, ... x;€ T foralli<n.
The following result is due to Scheiblich [12].

Proposition 1.1. Relative to the operation of taking unions of sets, the set of all
finite closed subsets of RU {1} forms a semilattice E yx isomorphic to the semilattice
of idempotents of the free inverse monoid on X.

We shall use the notation developed in this construction of Ey throughout the
paper.
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2. The construction

Let X be a non-empty set and Xo=XU{x,} where xo¢ XUX'. As above, Ex
denotes the semilattice of idempotents of the free inverse monoid on X. Denote the
principal ideal of Ex generated by A € Ex by (A): thus(A)={BeEx:B2A}. Note
that the antiatoms of Ex (elements covered by {1}) are of the form {1,x} or {1,x’}
for xe X. For x, ye X let n(x, y) be the 2-cycle of Sy (the symmetric group on X))
which interchanges x and y (n(x, y) is the identity map on X if x=y) and let n(x, )
actonaword w=x,...x,€ RU{1} by wn(x, y) =x,n(x, y) ... x,m(x, y); where zr(x, )
denotes the action of n(x, y) on zif ze X and z’n(x, y) = (zn(x, ))’ if z€ X. Note that,
if we R, then wn(x, y) € R. Extend the action of n(x, y) to Ex by defining An(x, y)=
{wnr(x, y):we A} for A€ Ex: note that An(x, y)e Ey if A€Ey. For xe XUX"
definex: RU{1}—=RU{1} by wet=x- wforwe RU{1} and define Ax={wx: we 4}
for A € Ex. Now define a principal ideal isomorphism y, ,: ({1, x})—=<({1, "} (for
X, yeX) by yo,=nxy)p'=%n(xy); ie Ay,,=An(x,y)y'=Ax'n(x,y), for
Ae{{l,x}). Note that y,, is a principal ideal isomorphism from ({l,x}) onto
(1,5} and so y,, € Tg, (the Munn semigroup [8] of E): the inverse of y ,in Tg,
is the principal ideal isomorphism y;‘y=)77z(x, = y)xof ({1, y’'}> onto ({1, x}>.
Finally let : denote the identity automorphism of Eyx and for x, y € X, we let

{ if x=y,

Yoo If y=Xxgand x#x,,
vyy if x=xgand y#x,
Yye if x#yandx yeX.

Dxy= 48]

We are now in a position to state the main theorem of the paper.

Theorem 2.1. Let X be a non-empty set, xo¢ XU X" and let P=(p, ,) be the Xox X,
matrix with (x,y) entry p,,€ Tg, defined by (1). Form the XyX X, Rees matrix
semigroup M = M(Tg,; Xy, Xo; P) over Tg,. Then .« is a locally inverse semi-
group whose biordered sets FLS xy=E(4) is a local semilattice. Define a map
i: Xo—FLSy, by i(x)=(x,1,x) for xe Xy. Then the pair (FLSx,,1) is a free local
semilattice on X.

We prove this theorem by a sequence of lemmata.

Lemma 2.2. The Rees matrix semigroup .4 is a locally inverse semigroup (and
hence E(.#) is a local semilattice).

Proof. Since Tg, is a regular (in fact inverse) semigroup with identity : and since P
has an entry : in each row and each column, it follows immediately from Marki 2]
that .# is a regular semigroup. Now if § is any inverse semigroup and P any A X[/
matrix over S, it is routine to check that, for idempotents (i, x,A) and (J, y, u) of
AHA(S; I, A; P), we have (i, x, )w (j,y,u) iff i=j, A=y and x<y in S, (, x,A) #
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(ywiffi=jand x 2y in S, and (4, X, 4) #(Jj, y, ) iff A=y and x Zy in S. From
this it follows easily that the regular part of 4(S; I, A; P) is locally inverse. (This
argument follows from results in McAlister [3] and is explicitly stated in Meakin
[5].) Hence .# is locally inverse.

A convenient description of the idempotents of .« is provided in the next result.

Lemma 2.3. Let x,ye X with x#y and let y e Tg,. Then we have:
(v, x)eE(4) if and only if y=1.4, for some A €Ey;
(Xo 1 VYEE(H)iff y=7 I(A> forsome Ae Ex withy' e A;
Gy x)eE(a)iffy=x I(A) Sforsome Aec Exy withx'e A; and
(xy, »eE(L) iff y=pr(x, ¥) I(A> Jor some A e Ey with y'e A.

Proof. For any x, ye Xpand y e Tg, it is easy to see that (x, y, y) € E(.«) if and only
if ysp;x'; i.e.y =py‘xl |<A> where A is some finite closed subset of R! such that (A) is
contained in the domain of p;x’. The result now follows easily from the definition
(1) of the py,.

The above result shows that an element (x, y, y) € .# is an idempotent if and only if
y is the restriction of py"xl to a suitable principal ideal {A) of E: it is convenient to
denote such an idempotent by (x,y(A), y) in the remainder of this paper. The
Green’s # and Z relations on E(.«#) are described in terms of this notation in the
following lemma.

Lemma 2.4. [fx, ye Xoand x+y, then (x,p(A), x) Z (%, y(B), Y) iffA=B; ifx, ye X
and x#y then (y,y(A), ¥) Z(x, ¥(B), y) iff A=Byn(x, y); if x, ye X then:

(X0, V(A ») £ (3, ¥(B), y) iff A9 =B, and

(X0, ¥(A), X0) £ (x, ¥(B), xo) iff A =Bx.

Proof. Suppose that (x, y(A4),x) 2 (x, y(B), y) with x#£y and x, ye X. Then ~
(% 143, X6 (P05 2)) |8 ) = (% (P06 1)) Leays ),

SO 14y(FIm(x, »)) |<B>= (yn(x, ¥)) |<B). Since the domain of the mapping on the left of
this equation is (A UB) and the domain of the mapping on the right is B, we have
AUB=B;i.e. ACB. Also,

(6 (P70 YD) |ea3s WX Leays X) = (6 1ay, X),

so yn(x, y) |(B>rz(x, WP '1ay=1c4y and hence 1gy1ay=14y; i.e. AUB=A and so

BcA. It follows that A=B. One easily checks that conversely, if A =28 then

(x, y(A), x) Z (x, y(B), y). A similar argument applies if either x =x, or y=xg.
Suppose now that (y, y(A4), ¥) Z(x, p(B), y) with x#y and x, ye X. Then

(y’ ‘(A)y y)(x, (,VTE(X, y)) I(B)s y) = ()’, l(A)v }’),
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SO 1 4y7(x, Y)Y (Fr(x, y)) i(m:t(,‘) and it follows (by equating domains of these
mappings) that AUBpn(x, y)=A; i.e. Byn(x, y) CA. Also,

(6 (F70% 1)) Ly VD 1eays ¥) = (5, (P75 ) kays ),

sO (Fr(x, y)) |<B)1<A>=(yrt(x, b%)} |<B) and so (by equating ranges of the mappings) we
have Byn(x, y)UA = Byn(x, y); i.e. A C Byn(x, y). Hence A = Byn(x, y). Again, one.
routinely verifies the converse: (¥, y(4), ¥) £ (x, y(B), y) if A=Byn(x, y). A similar
argument applies when either x=x, or y =Xx,.

For each xe€ X let b, be the idempotent b, = (x,1,x) of E(.#) and let by=b,,. The
following result follows from Lemma 2.4.

Corollary 2.5. For x, ye X with x+y, we have
(x, ¥(A), )Qb,46,= (1, y({1} UAPT(X, Y)), ),
(6 ¥(A), )Ap,00,= (5, Y({1} UAP T(x, 1)), ),
(x, Y(A), X)@byAny = (X, Y ({1} U AX), Xo),
(6, Y(A), X)A o059 = (X0, ({1} VAL, x0),
(X0, Y(A), X0)0p,4p,= (1, y({1} U AP), »),
(x0, Y(A), x0)Ap,00,= (¥, Y({1} UAF"), »).
Proof. By Lemma 2.3, if x#y, we have (x,y(A4), x)0p,= (x, y(A), ,\;)A(y, Ly)=

(x, 7(C), »), where C is the smallest finite closed subset of RU {1} which contains A
and y’. Hence (x, p(A4), x)op, = (x, y({ ¥’} U A), y). it follows from Lemma 2.4 that

(x5, y(A), )ep,dp, = (1, ({ ¥}V A) Fr(x, ¥)), 1) =y, y{1} U APn(x, ), ),

as required. The other results in the statement of Corollary 2.5 follow in a similar
fashion.

We aim to show that E(.#) is generated (as a local semilattice) by {b,: xe€ Xj}.
We introduce the following notation in order to do this. For x € X, define maps a(x)
and a(x’): E(#4)— E(4) by

a(x) =0y Ap, and a(x’)=4,0s,. @
[Here xg is an element not in X,U X’: we denote X'U {x3} by X;.] For xe X, and
ye X define

xp ifx=y,

If yi,55 ..., 7, XUX" we let I(yy;...y,) denote the set of initial segments of
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Y1Y2-- Yps iee.
Iy ) ={L YL, V1Y s VY2 Vo)
Clearly I(y,y;... yp) is a finite closed subset of RU{1}; i.e. (y,y>...y,) € Ex.

Lemma 2.6. If xeX, and yi,y3...,y,€ XUX', then there are elements
21, Zz,...,ZpEXoUX(; and ZoEXo such that Z; & {Zi+1,zl‘l+1} fO" i=0, ..., p—1land
06 YU(Y1 Y2 Vo)) X) = bpa(z)a(zs) ... a(zy).

Proof. We do this by induction on p. If p=1, then (x,y(I(y,y: e Yp)) X) =
Coy({Lni})x). If yieX set Zo=[x ] and z;=x: if y;e X’ set zp=[x, ¥{] and
2y =x". One easily checks from Corollary 2.5 that (x, ({1, y1}), X) = b a(z) in all
cases: for example, (xo, Y({L, ¥}), x0) = (), 1, ¥)ax(xg) if y € X, and all other cases may
be checked similarly. It is also clear that zo& {z), z{}. Suppose now that the result is
true for all words y,y,... yx of length k <p and consider (x, y(/( ¥ )2 ... ¥)), X) with
x#xg. Define we E(.#) by

_ {([x, L yA(ya ypr y D) [ 1) ifyieX,
(Lo y1, (Y2 ypmle, yO), (6 1D if yie X,
and let
7= {x if yje X,
Polx ifyeX.

Clearly z,¢ {[x, »:},[x yil,[x »il%[x y1]'}. Now if y,=x, then [x, ¥]=x, and
m(x, y;) is the identity transposition, so w= (xo, y({( y2 ... ¥,), Xo) and so by Corollary
2.5,

wa(zp)=wa(x)= (x5, y({1}UUI(y; ... ¥p)) 1) %)

= y{1}Uy [(y2... 7)) %)
= YY1 V2. Yp)) X).

A similar argument deals with the case y; =x". If y;e X and y, #x, then [x yl=y1,
so w=(y;, YH()2...yp7(x, ¥1)), y1) and so by Corollary 2.5,

wa(z,) = walx) = (6, y({ 1} UI(yz... yp (e, y))Xalx, yy), x)
= y({11U . 1(y2... yprlx y))R(x, ¥1)), %)
= y{1} VI y2...5p)), X)
=X y{I(y1Y2...¥p)) X).
The case y; € X’ and y;#x is dealt with similarly. Hence, in all cases, if x#x, we
have (x, y(I(y1y2... ¥p)) X) = wa(zp). If x=x, define we E(.#) by
_ {(yl,y(l(yzu-yp)),yl) if yjeX,
OLYI(y2 ) y1) iy € X,
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and let z,=x, if y € X and z,=xg if y,€ X". Then in both cases it is easy to check
that (xo, Y({(¥1¥2-.. ¥p)), Xo) = wa(z,): we thus have (x, y({( ¥, y1... ¥p)), X) = wa(Z,) in
all cases. Now by the induction hypothesis there exist 23,25, ...,2,-1€ XoUXp and
%€ Xp such that z; ¢ {z;,1,2{4,} fori=0,1,...,p—2 and w= b, a(z)a(2y)...a(z,-)).
It follows that (x,y({(¥1Y1... ¥ X) = ba(z))(2)) ... (2, - Da(Zp); since z,_ =
ix, yil or [x, ¥11, 2,-1 & {2, 2,} and hence the result follows by induction.

Lemma 2.7. The representation in the previous lemma is unique; i.e. if
b @(2)(22) ... (Zp) = byea(up)a(uz) ... a(g)
for some zg,upe Xy and z,,u;€ XoU X with 2;¢ {201, 2/+1} and u;& {u;., uis\},

then p=q and z;=u; fori=0,..., p.

Proof. It is straightforward to verify from Corollary 2.5 that
bpa(z)a(zy) ... a(z)) = (¥, y(I(Wp)), ), for j=1,...,p,

where the elements y; of X, and words w; in the free semigroup on XU X" are given
inductively as follows:

_ {Zj if ZJ'GXQ,

et " for j=1,...,p, 4
7 z; if z;€ Xq, J p @

21 if zg=Xo,
wi= 9zp if Zo#Xp and z,¢€ X, (5)
2y if zg#xp and z; € Xy,

and for j=1,...,p—1,

Lje1Wj if y;=xo,
(Zjs W), ) fy;#£xoand 2, € X,
Wi =13 @awpn(zi.1,y) if yiExpand z;.,€ X7, ()]
Yiw; if y;#0 and z;,,=xo,
yiw; if y;#0 and z;. = Xo.

Similarly one sees that
bua(u)a(uy) ... a(u)) = (a;, y((v))a), forj=1,..,q,

where the elements a; of X, and the words v; (j=1,...,q) are obtained from
Ug, Uy, ..., Uy in the same manner as the y; and w; (j=1,..., p) are obtained from
Zgs Zy» -+-» Zp- It fOllows immediately that w,= v, and hence that p=gq since p is the
length of w, and ¢ is the length of v,: it is thus also immediate that y,=a,. We
prove the desired result by induction on p. Suppose first that p=1. If uy=x, and
u, € X, then we see that wy=v;=u;eX and y,=a,=u;: since w; =y, we see
from (4) and (5) that we must have zo=x, and so zp=ug: also since zo=xp we must
have z;=w, so z,=u;. If uy=x; and u, € X', then we see that w;=v;=u;€ X’ and
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Yi=a;=uj:since y, = w| we see from (4) and (5) that zp=xp and 50 2o = u,: also since
Zo=xpwe have z;=w,and so z,=u;. If upe X and ¥, =xo, then w;=v;=uye X and
n=ay=u;=xy: since wi ¢ {y;, vy} and w, € X we see from (4) and (5) that w, =z,
and so zp=1up: also z,€ Xy, so y;=z; and so z;=u,. If upe X and u,;=xg, then
wi=vy=uge X'and y;=a,=u;=xp: since w & { y|, ¥} and w, € X' we see from (4)
and (5) that w, =zgand so zg=uy: also z, € Xy, 50 y,=z1and so z; =u,. If uge X and
u e X, then wy=v;=upe X and y,=a,=u;€ X: since w & {y;,y} and w e X we
see from (4) and (5) that w; =z, and 50 z9=uy: also z;€ X 50 ¥ =2, and 50 z;=a,.
The remaining case (uge X and u,e X’) is dealt with in a similar fashion and so
Zo=upand z;=u, in all cases: thus the result is true for p=1.
Suppose inductively that the result is true for p =, and assume that

b (2)) .. a(Zjs1) = buga(uy) ... &y, )

for z;, u; as in the statement of the lemma. In the notation of the beginning of the
proof of the lemma, we have w;, ;=v;,, and y;, =a;,,. If u;=x; and u;, e X,
then a;=u;=xpand so w;, | =v;,=u;,v;and y;. 1 =4a;, =u;,: from (4) and (6)
it follows that y; =x, so y;=a;and w; =z;,w;: hence (since w;. 1 =v;, ), Zj, 1=
uj,rand v;=w;. lfu;=xpand u;, € X', thena;=u;=xpand so wj, | = V.1 = ;. v,
and y;.1=a;,=uj,;: from (4) and (6) it follows that y;=x,, so yi=a;and w;. =
Zj+1w;: hence, again it follows that z;, ;=u;,,; and v;=w,. If u;e X and u;.,=x,,
then a;=u;#xpand so w;,=v;,;=u;v;and y,.;=a;,=u;, : since the first letter
inw;, isu;¢ {y;+1,¥/+1} and u; € X, we see from (4) and (6) that we must have
Yitxp and ;1€ Xy, SO Zj,1=Yj1=qj.1=Uj,1=Xg and 5O ywi= Wi =u =
u;v;, from which it follows that y;=u;=a;and w;=v;. Ifu;e X and u;, = xpthena
similar argument shows again that z;,,=u;.(, w;=v; and y;=a,. If u;€ X and
i €X then a;=u;#xpand so w;, =vj, = v ,a) and ;. =a;. =
u;,: since the first letter in w;,, is @;=u; and u; ¢ { y;,\, ¥/+ 1} and u; € X, we see
from (4) and (6) that we must have y;#x; and z;.,€Xp, SO Zj.1=Yj+1=aj1 1=
uj 1€ X and so (2,  \WHT(Zj4 1, Y) = W) 1 =01 = (U, v)n(u;, 1, @), from which it
follows that y,=a; and hence w;=v;. Finally, if u;€ X and u;, € X' then a similar
argument shows that z;,,=u;,, y;=a; and w;=v;. Thus in all cases, we have
Zje1=Uj,y, ¥j=a; and w; =v;. Since y;=a; and w; =v;, we have

b, 0(z)a(zy) ... a(z) = bya(upa(uy) ... a(u)),

and hence by the induction assumption, z;=u; for i=0,1,...,j. We also have
Z;+1=u,. and so the result is proved by induction.

Lemma 2.8. Every element (x,y(A), y) of E(.#) may be expressed in the form

(5 ¥(A), ) = [/\ (6 (W), x)]gby,

where

/\A (x, y((w)), x)
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denotes the meet in the semilattice w(b,) of the elements (x, y(I(w)), x), we A.

Proof. By Lemma 2.4 we see that (x, y(A4),x) Z(x, y(A), ¥) and so (x, y(4), y)=
(x, y(A4), x)@p,. But by Lemma 2.3,

(6 y(A), x) = (x, 14, X) = /\A (% Ly X) = /\A (x, y(I(w)), x).
Corollary 2.9. E(.#) is generated by {b,: xe X,}.
Proof. This is immediate from Lemma 2.8 and Lemma 2.6.

Remark 2.10. Lemmas 2.3, 2.6, 2.7 and 2.8 provide us with a ‘canonical form’ for
expressing elements of E(.#) in terms of the generators b,, x € X,. Every element of
E(.«) is uniquely expressible in the form (x, y(A4), ) for some x, ye X, and A€ E,
and hence may be uniquely expressed in the form [A,, 4 (x, y(I(w)), xles, (Where we
interpret y(f(w)) as 1if A= {1}) — and every element (x, p(I(w)), x) may be uniquely
expressed in the form b, a(z))a(z2) ... a(z,) for some zo€ Xp and z;€ XU Xy, Of
course this canonical form does not provide the only way of expressing (x, y(A4), ») in
terms of the generators b,, x € X,: nor does it necessarily provide the ‘shortest’ way
to generate (x, y(A), y) from {b,: xe X,}.

In order to prove Theorem 2.1, we need to establish some notation and results
which apply to an arbitrary local semilattice E. Let E be a local semilattice and let E*
be a set disjoint from E such that the mapping e—e’ is a bijection from E onto E”:
again, identify (e’)’ with e for each ee E. For ee E define a(e) and a(e’): E—E by:

o(e)=g.4, and a(e’)=4.0. ™

Lemma 2.11. If E is any local semilattice and e, fe€ E, the mappings a(e) |w( 1 and
ale’) |wm are homomorphisms from w(f) into w(e); also fale’) A eos ¥ ea( f) and if
te w(fa(e), se w(ea(f)), then t R tos Zta(f) and s ¥si, & sa(e’). In addition, if
g€ wl(e) and he w(f) then go,=[gN(ha(e’))]oy.

Proof. Since eo;=fA,=enfe w'(f)Nw'(e) it is clear that there is some element in
ReasNwle) and so egr=fA. X fA.0.=fale’): similarly, eos Zea(f). If te w(fa(e’)),
then there is an element in R,Nw(egs) and so tZtgs: again, foyweo; and
egr Zea(f), so toy ¥ ta(f). Similarly, if s€ w(ea(f)), then s ¥si, Zsa(e’). Now let
hy,hyew(f) and A= hAh; (the meet in w(f)). Since Aw A; it is clear from the
definition of the A operation in a local semilattice that Ad,w h;A, and ha(e’) =
hl.0.w hid.0.=h;a(e’) for i=1,2. Now suppose that kw h,a(e’) for i=1,2. Then
by the same argument as above ka(f)w h;a(e)a(f)wh; for i=1,2, so ka(f)w
hiAhy=hand it follows that ka(f)a(e’) w ha(e’). But for i=1,2, kw h;a(e’) # h;id,,
SO kosr Zk. Also korwhid, £hid.As, so kords L kos. Hence k R kor Fkords=
ka(f). It follows that ka{ /)a{e’) = k and hence & w ha(e’). Hence ha(e’) = hya(e’)A
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hya(e’), and so a(e’) is a homomorphism as required. Similarly a(e) is a homo-
morphism.
Now let g€ w(e) and A€ w(f). Then

8on=gNh=(eNg)Nh
=(eng)A(eAh) (by axiom (b) for local semilattices)
=gNheg, R gAh(a(e’)) (since e,, # hale’)),
sO gox Z gA(ha(e’)) and it follows that go, = [gA(Aa(e’))]oy, as required.

We are now in a position to provide the following.

Proof of Theorem 2.1. Let f: Xy— E be any map from X to the local semilattice E.
We must show that there is a unique homomorphism ¢:E(#)—E such that
@(x, 1, x) = f(x) for each x& X,,. In order to define the map ¢ : E(.#)—E we use the
canonical form for elements of E(.#) (see Remark 2.10). If (x, y(A4), y) € E(.#) then
we write (x,y(4), ¥) =\, c4(x yI(W)), )]0y, for each we A there are elements
z20€ Xpand z;€ XoU X (i=1,..., p) such that (x, y(I(w)), x) = b,a(z)) ... a(z,). In this
case we write @((x, y(I(W)), X)) =f(2o)a(f(21)) ... @(f(2,)), where f(z)=[f(z)] for

z;€ Xg. Now since b,a(zy) ... 2(2,) € w(by), we have
' {x if z,€ Xy,
zp = ’ H ’
x' if z,€ Xy,
and so
S if z,€ X,

f))  ifz,e Xy,

from which it follows that [f(zp)a(f(z)))...a(f(zy) € w(f(x)). Hence
o((x, y(I(W)), x)) € w(f(x)) for each we A. Now define

f(zp)= {

P((x, ¥(A), ¥)) = [w/\A P((x, Y (W), X))] Qf(y)» ®

where the meet operation is the meet operation in w(f(x)). Since each element of
E(4) has a unique canonical form, ¢ is a well-defined map from E(.#) to E: also
#(b) =9 ((x 1, x)) = [f(x)]0 =S (x) for each xe Xj. We need to check that ¢ is a
homomorphism.

Suppose first that (x, y(4), x) Z (x, (B), ») in E(.#). Then by Lemma 2.4 we have
A =B. Suppose first that x#y and x, y€ X, so that y’e A by Lemma 2.3. Now

#((x, ¥(4), X)) = [W/E\A P((x, y(I(w)), x))]gf(x)
= /\A P((x, y(I(W)), X)),

and  @((x, (A), YD) = [Anea &((x, (W), X)]0sy)- Since y'eA and since
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(x {1, y’'}, ) =b,alx’) (by Corollary 2.5), we see that @((x, p(A4), x)) w f(Na([S()])
in E (by (8)). But fA»a([S()]) ZS(¥)Ap0 s0 (X, ¥(A), X)) X [@((x, ¥(A), X)]ef ) =
o((x, (A), y)) by Lemma 2.11. A similar argument in case x#y and x=x, or x#y
and y = x, shows that ¢((x, y(A4), X} Z ¢((x, y(A), y)) in these cases also. Hence we see
that, if (x, y(4), x) Z (x, ¥(B), ¥) in E(.4), then ¢((x, ¥(A), X)) Z ¢((x, ¥(B), )) in E.

Now suppose that (x, y(A), ¥) Z(», ¥(B), y) in E(.4). If x#y and x,y € X then by
Lemmas 2.3 and 2.4 we see that y'e A and B=Ayn(x, y). Now

oy, ¥(B), y)= [W/E\B oy, y(W), V) |2s»)

-

- [/\ o 7 IW), )

and

P((x, y(A), y)) = [w/e\A #((x, y(U(W)), X)) |@1y)-

As before, we have y’e A and (x, {1, y'}, x) = b,[a(x)]’, s0
W/E\A #((x, y(W)), ) w f(P)e([SCI]),
i.e. @((x, ¥(A), x) wf(Ma([f(x)]) in E. It follows by Lemma 2.11 that
B((x, ¥(A), ¥) = p((% W(A), x0esp £ (90 y(A), x)la(f(»),
since f(P)a({f)) 2 S DA s LS (P As0Any)- Hence

¢, y(A) ) £ [ /E\A P((x, yI(W)), x))]a(f ).

But if weAd and (x, y({(w)), x) = b,a(zy) ... a(zp) € w(x), then (x, y(I(w)), X)a(y)=
b(21) ... Az ) ¥) € w(y) and b o(z) ... a(zp)a(y) = (y, yI(v)), y) for some ve B.
It follows that

[W/E\A P((x, y(I(w)), x))] a(f(y)= W/E\B o((», y(v)), )

=¢((), ¥(B), M),

and hence ¢((x, y(A), »)) Z¢((», (B), )). A similar argument in the cases where
x=Xxp, y*x and y=x,, y+x shows that ¢((x, p(A), ¥)) Z o((y, y(B), y)) in E when-
ever (x, y(A4), y) £(y,y(B), y) in E(.#). Hence ¢ preserves the #- and Z-relations in
E(a).

Suppose now that (x, y(C), »), (4, y(D), v) € E(.#). There are uniquely defined sets
A and B such that (x, y(C), WA, y(D), v) = (x, y(A), X)A(v, (B),v). If x=v, then it is
evident from (8) that @((x, y(A4), X)A(v, ¥(B), ) = ¢((x; Y(A), X)) Ad((v, ¥(B)), v)), so
assume x#v and also that x,veX. Then by Lemmas 2.3 and 2.4,
(x, ¥(4), X) A (v, ¥(B), v) = (x, y(E), v), where E=AU Br(x,v)0'U {v’}. We have
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P((x, ¥(A), x)) = /\A o((x, y(I(w)), x)),

o((v, p(B),v)) = 1/\5 (v, y(I(1), v)),

r h

o((x, Y(E),v)) = [/\E o((x, y((r)), x)) Jg,(u).

By Lemma 2.11 we have (x, y(A), x) A(v, ¥(B), v) = [(x, ¥(4), X) A(v, (B), v)a(x")]@p,»
$0 (X, y(A), X) A(v, ¥(B), v)a(x’) = (x, ¥(E), x), and hence

r 1 r 7

L/E\A (o, y(I(w)), x)J A M\B (v, Y(()), v)a(x’ )J = A (5 ¥U(), 0.

It follows from (8) that

P((x, ¥(A)), X)) A ((v, ¥(B), v)a({ (X)) = p(x, ¥(E), x),
and hence
((x, y(E), v)) = o((x, y(E), X))es)
= [p((x, ¥(A), xNAD((v, ¥(B), L) ([ f)] )2 1wy
= @((x, y(A), X)Ap((v, ¥(B),v)) by Lemma 2.11.
Similar arguments in case x =xy, ve€ X or y=Xx,, x€ X show that
P((x, (A), YA (v, ¥(B), 1)) = @((x, y(A), ) A@((v, ¥(B), v))
in all cases. Since ¢ preserves %- and Z-relations in E(.#), we have
P((x, Y(C), YA, (D), v)) = d((x, Y(C), Y AP((1, (D), v))

for all (x, y(C), »), (u, (D), v) € E(.#). Hence ¢ is a homomorphism.

Finally, if v is any homomorphism from E(.#) to E such that w{b,) = f(x), then
we must have w(b;a(z)) ... a(z,)) =f(zo)a(f(z1)) ... a(fl(zp)) for each zpe Xy and
zi€XoUXy(i=1,..., p), so it easily follows that = ¢. This establishes the unique-
ness of ¢ and hence completes the proof of the theorem.

The explicit nature of the description of the free local semilattice provided in
Theorem 2.1 makes it clear that the word problem is solvable in FLS 4, for each set
Xy. From Lemmas 2.3 and 2.4 one can explicitly compute the meets (x, y(4), Y)A
(4, y(B),v) in E(.#): hence any expression involving meets of the generators b, of
E(.«) may be reduced in a finite number of steps to the form (x, y(A), y) for some
x,yeXp and A€ Ey. It is thus possible to decide, in a finite number of steps,
whether two expressions in the generators of E(.#) yield the same element of E(.#).
Hence the word problem in FLSx, is solvable.

The local semilattice E(.#) is a disjoint union of its maximal subsemilattices in the
sense of Pastijn [11] or Byleen, Meakin and Pastijn [1]. It is clear that the ‘diagonal’
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maximal subsemilattices (those of the form {(x,y(A4),x): A€ Ex} for xe X,) are
isomorphic to the semilattice £y of idempotents of the free inverse monoid on X,
while the other maximal subsemilattices are isomorphic to principal ideals generated
by antiatoms of E y. A diagram depicting the free local semilattice on two generators
may be found in Meakin and Pastijn [7].
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